Chapter C

Calculus Background for Linear

Differential Equations

These notes present selected freshmen calculus and complex number background for the
study of linear differential equations. The emphasis is how calculus may be used to under-
stand the solutions to linear differential equations; as such the emphasis is different from
calculus class. Many of the calculus problems are more difficult than the ones found in most
calculus courses. These notes and problems may be used to enhance a calculus course or a
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1 Graphing y=2"

Use freshmen calculus to do these graphing exercises.

=3
10, when z > 0.

Exercise 1.1 Graph this function: y = f(x)
What is limgo f(z) =lim, o+ f(z)?

3
x10, when z > 0.

Exercise 1.2 Graph this function: y= f(z)
What is limg o f(z) =lim, o+ f(z)?

Exercise 1.3 Graph these two pairs of equations:

(a) y = +z2.

(b) y=+x3.

Observe that, as pairs, the two graphs have the same “shape”; they are of the same “type”,
— even though the graphs of y= 2% and y =3 have different shapes.

3

The pairs of graphs for the equations y = +z", r € R have five different “shapes’
(depending on the number 7). Examples of each of the shapes occur in the next exercise.

Exercise 1.4 Graph these pairs of equations:

(a) y = £a°

(b) y=+3z!

=

(c) 8 = z, or equivalently y = + (%)
(d) y=+72°

(e) y=+3z6
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Exercise 1.5 Make a chart or table which displays the answers to these questions about the
graphs in the previous ezercise:

(i) Which graphs are tangent to the z-axis at the origin? A graph is tangent to the x-azis
at the origin when the graph has a horizontal tangent at the origin. This occurs when
iy| =0
dzlz=0 = U

(ii) Which graphs are tangent to the y-axis at the origin? A graph is tangent to the y-axis
at the origin when the graph has a vertical tangent at the origin. This occurs when
lim,_, Z—Z = to00 or when Z—;|y:0 =0. .

(iii) Which graph is concave upward? Which graph is concave downward?

The graph of y = f(x) is concave upward where 227% > 0. The graph of y = f(x)

. 2
is concave downward where 37?4 < 0.

(iv) Which graphs are asymptotic to the x-azis? A graph is asymptotic to the x-axis when
limg 100 =0

(v) Which graphs are asymptotic to the y-azis? A graph is asymptotic to the y-azis when
lim;_,g+ = o0 or lim, ,o- = +oo

(vi) Note that all five pictures of two graphs together are symmetric about the z-azis? Note
that all five pictures of two graphs together are symmetric about the y-axis?

Exercise 1.6 Consider these three equations:

(i)

g1 = ey
(i1)

Yo = zt,

ys = 209

(a) Using your graphing calculator, graph these three equations together, on a single set of
azes, for 0 <z <1. Can you distinguish between the 8 graphs?

(b) Using calculus, show that the graph of y1 = x'*! is tangent to the z-azis at the origin.

(Calculate by hand that y1(0) =0 and %hﬁ:o =0.)

(c) Using calculus, show that the graph of y3 = z°° is tangent to the y-azis at the origin.

(Calculate by hand that y3(0) =0 and lim, .o+ % = 00.)
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(d) Using your graphing calculator, graph these three equations together, on a single set of
azes, using the “window” 0 < z,y < 10™*. Now is it clear that one graph is tangent
to the x — axis and another graph is tangent to the y — axis at the origin?

(e) Using Mathematica, graph these three equations together, on a single set of axes, for
0 <z <1. Can you distinguish between the 3 graphs?

Note that the graphing calculator has limited usefulness in graphing these equations.

Exercise 1.7 Consider these three equations, when 0 <z <1,:

(i)

ys = 3:0.1.

(i)
Ys = (EO.

(i)
Y6 = x—O.l

(a) Using your graphing calculator, graph these three equations together, on a single set
of azes, for 0 <z < 1. Can you distinguish between the 8 graphs? If not, zoom in
toward x = 0 wuntil you can distinguish the 3 graphs. How close to x = 0 was it
necessary to zoom in in order to distinguish the 8 graphs?

(b) Using calculus, show that the graph of ys = %! is tangent to the y-azis at the origin.

(Calculate by hand that y4(0) =0 and %LT:() = 00.)

0.1

(¢) Using calculus, show that the graph of ys =z~ blows up at the origin. (Calculate

by hand that lim,_,q+ ys(z) = oo.

(d) Using Mathematica, graph these three equations together, on a single set of azxes, for
0 <z <1. Can you distinguish between the 3 graphs?

Exercise 1.8 Graph the following pairs of equations. Determine whether each graph is
tangent to an axis at the origin and whether each graph (or part thereof) is concave upward
or downward? A consequence of the preceding exercise is that your graphing calculator will
not be useful here. But calculus will be; Take, use and interpet the first and second derivatives
of each function. Answering the above exercises should be useful.

(a) y'%° = 219 or equivalently y = z'°'. Which graph in Ezercise 1.4 is of the same

“type” as this graph?

(b) y'9° = 29 or equivalently y = x°°. Which graph in Ezercise 1.4 is of the same

“type” as this graph?

01

(c) y*%° = z', or equivalently y = x:°t. Which graph in Ezercise 1.4 is of the same “type”

as this graph?
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01

(d) y*%° =z, or equivalently y =z~ Which graph in Ezercise 1.4 is of the same

“type” as this graph?

Exercise 1.9 Using the graphs of the preceding exercises as data, make conjectures about
the various graphs of (y)" = x*, for various values of T and s.

Exercise 1.10 (a) Graph these equations together using a single set of azes: Ay = +Bxb
when (A’ B) = (47 2)7(97 3)7(170)7(7’ O)’(O7 1)'
(b) Graph these equations together using a single set of azes: Ay = £Bz® when (A, B) =
(2,4),(3,9),(1,0),(7,0).

Exercise 1.11 When z > 0, show that all the graphs of y = Bx9, Vp>o and V41 are
tangent to the x-azis at the origin. The graphs are all concave upward.

Exercise 1.12 When z > 0, show that all the graphs of y" = Bz, V¥ ;,~s5»0 and Vpsg
are tangent to the y-axis at the origin. The graphs are all concave downward.

Exercise 1.13 When z > 0, show that all the graphs of z°y" = B, ¥ = .0 o
are asymptotic to the = and y-azes. The graphs are all concave upward.

and VB>()

The results of the graphs of these exercises are collected and generalized in the next
proposition.

Proposition 1.1 (a) All the graphs of A(+y)" = B(£x)®, Yapro and YV gsrso (o7
equivalently y = C(£x)9, Yoro and Vg1 ) are tangent to the z-azis at the origin.
The graphs are all concave upward in the upper-half plane (where y > 0); and the
graphs are all concave downward in the lower-half plane (where y < 0).

(b) All the graphs of A(xy)" = B(£x)®, V ,>s50 and VYapro (or equivalently y =
C(£x)9, V o<g<1 and Voyo) are tangent to the y-azis at the origin. The graphs are
all concave downward in the upper-half plane; and the graphs are all concave upward
in the lower-half plane.

(c) All the graphs of A(xy)" = B(xxz)®, V rs5<0 and Vapro (or equivalently y =
C(£x)9, V g<0 and Veozo) are asymptotic to the x and y-azes. The graphs are all
concave upward in the upper-half plane; and the graphs are all concave downward in
the lower-half plane.

Remark. This proposition may be established by using freshmen calculus as in the preceding
exercises.



2 Exponential growth and decay.

The exponential function. The exponential function is defined as the inverse function of
the natural log function, Inz. Hence

Inx
e =z, Yiso-

The basic law of exponents is:

at+b __ _a_b
€ » Vo and b

Other rules for exponents are:

b b, —a __ 0 __ a
e®=(e") e "=—, e =1 and e" >0, Vieal numbers o

Example 2.1
62 Inz _ (elnw)2 — 332.
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Exponential growth.

Proposition 2.2 For each constant number, r, the general solution to & = rx(t) is
x = Ae™, Vj,.

Remark. This is called “exponential” growth because the solution is the exponential func-
tion; there is no exponent in the defining equation. Memorize this proposition; “exponential”
growth occurs a lot.

Calculations. Given: z = rz(t), divide both sides by x, now %Z—f =71, Vpzo. We
exclude x = 0, since dividing by zero is not permitted. Integrating both sides with respect
to t yields: [ %‘fi—‘fdt = [r dt, Vgz. The change of variable (cancelling the dt’s) yields:
[idz = [r dt, V0. Evaluating both integrals:

1
In|z| + ¢, Vw;,go:/gdx:/r dt=rt+cy , Vypzo.

Setting c3 = co — ¢1, simplifies this equation to: In|z| = rt+c3, Ve, and  Vyzo. We
can remove the log by taking its inverse function, the exponential: e™ 2| — grit+es, Ves and Vg4,
which simplifies to:

|z| = elnlel = grites — e"e®, V., and V40

But |z| = +z, hence 4z = ee®, and multiplying by +1 yields:

z = (£e®)e, Vo, and V.

What is {(+e®), V¢, }? Looking at the graph of e”, we remember that the range is
all the positive numbers. Thus {e, V.,} is the set of all the positive numbers, and hence
{(£e®), V .} is the set of all positive numbers together with all the negative numbers, that
is, all the numbers except zero. Thus

{:I:eCB, Vc:;} = {A, VA?QO}.

Plugging this in yields:
T = Aert, VA;,gO and Vm¢0.

Finally, we observe that the excluded case A=0 and =z =0 Iis also a solution,
since: z(t) = 0 = 0e". Hence the formula is valid for all numbers:

z = Ae"™, Va.

Check. What have we shown thus far? We started with the equation & = rz and concluded
with z = Ae", V4. This shows that if the equation has a solution, it must be z = Ae™, V4.
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But maybe, there is no solution. We still need to check that z = Ae™, V, is actually a
solution. We easily do this by plugging in and calculating: Differentiating = = Ae™, with
respect to t, yields & = rAe™ = rz. v, YEA

Exercises

Exercise 2.1 Let z(t) = 100e™", V;; let t1 be the time it takes for xz(t) to decay/drop
to half its original value, that is: x(t%) = 12(0). Show that (2000 + t1) = $2(2000)).

1
2

Exercise 2.2 Let x(t) = 100e~", V;; let t; be the time it takes for z(t) to decay/drop
to 7% its original value, that is: z(t7) = .07z(0). Show that (2000 + ¢7) = .072(2000)).

Exercise 2.3 Let xz(t) = z(0)e™, Yy, where r is a constant. Let t4,ts and c >0 be
be three numbers such that: x(ts) = cz(0). Show that z(ts+ ta) = cx(ts)).

Definition. The halflife of exponential decay is the time ¢ 1 it takes for the material

T to be reduced to half its original amount, thus: z(¢t1) = 3z(0). The doubling time of
2

exponential growth is the time Zgoype, it takes for the material x to be increased to twice

its original amount, thus: z(tgoupe) = 22(0).

Remark. What is special about halflives and doubling times is that they are the same, no
matter at which time one starts counting or timing.



3 Parametric Equations

As background, we begin with a short description of “vector-valued” functions. This is a
good time to review parametric equations in your calculus book.

If z(t) =1t and y(t) = 2t, then v(t) = (z(¢),y(t)) means that v(t) = (t,2t) and v is
a function of ¢, whose range is the set of coordinate vectors in the plane. This function ()
is called a vector-valued function of t¢. Sometimes, z(t) =¢ and y(t) = 2t are described
as parametric equations with parameter ¢. Here, when ¢ = 10, then z = 10,y = 20 and
v = (10,20). Here y = 2z, V t; hence as t goes from 1 to 3, v(t) travels along the straight
line y =2z from (1,2) to (3,6).

Remark. Arrows should be placed on each curve to indicate in which direction the point

determined by the parametric functions is moving as time increases.

Exercise 3.1 Let z(t) = e* and y(t) = €', —oo <t < oo. Draw the graph in the
zy—plane.

Exercise 3.2 Let r(t) =t
graph in the zy—plane.

0(t), —oo <t < oo, for polar coordinates (r,0). Draw the

Exercise 3.3 Let z(t) and y(t) be (unknown) parametric functions of time. Given
z = 2x(t) and ¢ = 4y(t). Find (graph) the solution curve which goes through the point

(w,y) = (37 9)'

Set-up: First find the general solutions for z(t) and y(t).

Exercise 3.4 Let xz(t) and y(t) be (unknown) parametric functions of time. Given
z=2z(t) and y=3y(t). Graph 5 different solution curves in the xy — plane.

Exercise 3.5 Let z(t) and y(t) be (unknown) parametric functions of time. Given
T =4x(t) and y=2y(t). Graph 5 different solution curves in the xzy — plane.

Exercise 3.6 Let xz(t) and y(t) be (unknown) parametric functions of time. Given
= —-2x(t) and y=4y(t). Graph 5 different solution curves in the xy — plane.

Exercise 3.7 Let z(t) and y(t) be (unknown) parametric functions of time. Given
z=2x(t) and Y= —4y(t). Graph 10 different solution curves in the xy — plane.

Exercise 3.8 Let x(t) and y(t) be (unknown) parametric functions of time. Given
z=-Tz(t) and ¢= —Ty(t). Graph 5 different solution curves in the zy — plane.
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Exercise 3.9 Let xz(t) and y(t) be (unknown) parametric functions of time. Given
z=-Tz(t) and 9y =0. Graph 5 different solution curves in the zy — plane.

Exercise 3.10 Let xz(t) and y(t) be (unknown) parametric functions of time. Given
=0 and y="Ty(t). Graph 5 different solution curves in the zy — plane.

Exercise 3.11 Let z(t) and y(t) be (unknown) parametric functions of time, t. Sup-
pose that © =Ty(t) and y= —Tx(t), Vy. Let r(t) and O(t) be the corresponding (un-

known) polar coordinate functions of time, that is r2(t) = 2(t) + y>(t) and tan 0(t) =
y(t)
z(t)”

Check that 7 =0 and 6= —T, V.

Exercise 3.12 (puzzle) Let z(t) and y(t) be (unknown) parametric functions of time.
Let r and @ be the corresponding polar coordinates. Suppose that 7 =0 and 0 =
—7, V. What can you say about the graph of these parametric functions?

Exercise 3.13 Let z(t) and y(t) be (unknown) parametric functions of time and let b
be a (constant unknown) real number. Suppose that & = by(t) and ¢ = —bx(t), Vi Let
r and 0 be the corresponding polar coordinates.

Show that 7 =0 and 6= —b, V,.

Exercise 3.14 Let z(t) and y(t) be (unknown) parametric functions of time. Suppose
that & =6z(t)+7y(t) and y=—Tz(t)+6y(t), Vi. Let r and 6 be the corresponding
polar coordinates.

Check that +=3r and 0= —17, V,.

Exercise 3.15 (puzzle) Let z(t) and y(t) be (unknown) parametric functions of time.
Let r and 6 be the corresponding polar coordinates. Suppose that 7 = 3r and 6 =
—7, Y¢. What can you say about the graph of these parametric functions?

Exercise 3.16 Let xz(t) and y(t) be (unknown) parametric functions of time and let
a and b be (constant unknown) real numbers. Suppose that = = ax(t)+by(t) and y=
—bz(t) + ay(t), Vi. Let r and 6 be the corresponding polar coordinates.

Show that 7= 5r and 6 =—b, V.
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Exercise 3.17 Let z(t) and y(t) be (unknown) parametric functions of time for motion
on the hyperbola z? — 9y? = 7. Show that:

_ Yy
gz
Conversely:
Exercise 3.18 Given .
z Yy
y oz

Show that this represents motion on a hyperbola x> — 9y? = C, for some constant C.

Exercise 3.19 Given
=9y and Yy==x.

Show that this represents motion on a hyperbola z? — 9y? = C, for some constant C.

Exercise 3.20 Given
T=ay and y=bzx,

where a and b are positive constants Show that this represents motion on some hyperbola
Az? — By? = C, for some constants A,B and C, with both A and B > 0.

Exercise 3.21 Let z(t) and y(t) be (unknown) parametric functions of time for motion
on the hyperbola z? + 9y?> = 7. Show that:

T _ %
y oz
Conversely:
Exercise 3.22 Given .
_ %
y oz

Show that this represents motion on an ellipse x? + 9y? = C, for some constant C.

Exercise 3.23 Given
z=-9y and y=uz.

Show that this represents motion on an ellipse z* + 9y? = C, for some constant C.

Exercise 3.24 Given
T=—ay and Y = bz,

where a and b are positive constants Show that this represents motion on some ellipse
Az? + By? = C, for some constants A,B and C, with both A and B > 0.



4 Energy of two springs.

Example 4.1 (of two horizontal springs) Given a horizontal system consisting of a block
attached by two springs to two walls.

Figure C. .1 of two springs.

Let d be the distance between the two walls minus the length of the block; let ky
and ko be Hooke’s spring constant for the two springs; let 1y and Il be the natural
(unstretched) length of the two springs.

The stretched (and compressed) springs of this example are applying forces to the block
that they are attached to. According to Hooke’s Law, the two forces applied by the springs
at time t are:

F, = —kl(w — ll) = —kix+kily and Fy= —k‘z([d— :E] — 12)

Let F=F —F; andlet kK =k + ko and set b=1l1k1 + (lo — d)ke. Since Hooke’s
spring constant are positive numbers, k = k; + kg is also a positive number. Then, the

equations may be simplified to:
F=—kz+0.

Remark. Note that this equation has the same form as Hooke’s Law for a single spring;
here F' is the sum of the spring forces acting on the block, and & is the sum of the spring
constants.

A rest position occurs when the sum of the forces on the block is zero.

In this example, this occurs when the two spring forces on the opposite sides of the
block are equal and thereby cancel each other. This occurs when: 0 = F = F} — Fy,
that is when F; = F5. In this example, there is a unique rest position z,¢s, it occurs at
Trest = kb

The formula for Potential Energy.

We will derive the formula for the potential energy of Example 4.1. Let us move this
horizontal block by pushing on it, from the rest position z,ess = z(0) at time ¢ =0 to
another position x = z(t) at time ¢. The change in potential energy is the negative of the
work required to stretch them.

Let us calculate the work needed to stretch the springs. First a small review of the
definite integral.
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Small review of the definite integral.

The definite integral of a differentiable (or continuous) function can be defined ! as the
limit of Riemann sums, informally:

b n b
/a f(z) dz = Alirgogf(w)Aa: or simply /a f(z) de = Al:iEEOZf(w)A:I:

It is a nusance to write out the index, ¢ many times, more important the “n’s” and the

z keep changing as Az — 0; therefore we will omit them and simply understand that the
appropriate indices are implied.

Remark. When the function f(z) is differentiable (or continuous) on a closed interval
a <z < b, then the limit always converges as Az — 0. Also f: f(z) dz = Y f(z)Az. 2

Area under a curve is the most popular example of the definite integral, but it is
only one of many examples; it is not the definition. Energy and work are other important
examples.

Writing work as a definite integral.

During a small time period At, let Az(t) be the change in position of the block.

Let AW be the work required to move the block the distance Az(t) . Since the forces
are not constant, each AW =~ FAz. Hence

AW ~ Az F = —Azx kx + Azxb.

Work is a “Whole = )" parts” quantity. Hence the total work is: W = Y AW =
> —Az kx + Axb. multiplying and dividing by At yields:

W~ — ZﬂkaZ—bAt

. . . A d
Taking the limit as At — 0, results in 37 — 5 =

integral:

= v and the ) becoming a definite

. Az
W:Aligo—szmAt—l-Z—bAt /vka:dt—}—/—bdt

The total change in potential energy for these springs is the negative of the work
required to stretch them.

t
ChangeinP.E.:—W:/vk:vdt—/ d—xbdt
0 o dt

t 1 _ 1
/vkwdt:—:vkmﬁ;f):—k ka:rest
0 2 2

!as noted in (7) and the paragraph that follows on Page 296 of the calculus textbook written by Professors
Ellis and Gulick
24xy” means “approximately equal to” or “very close to”.
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since z(0) = Zpest-

tdx _
N bdt=xb|'=, =2 b— Tres b
Combining these equations:
Change in P.E. = 3 kzx®— 2 k xyost — T b+ Trest b.

Exercise 4.2 simplifies this to:

Change in P.E. = = k (z — Trest)’.

N | =

Let Ejy be the potential energy of the rest position. Then the potential energy when
the block is at position x is:

P.E. = - k (2 — Zyest)” + E.

N[ =

Proposition 4.2 The lowest potential energy, of such a system of one horizontal block and
two linear springs, (connected to walls) always occurs at the rest position.

Proof. We observed that k& = ki + ko is a positive number. Squares are always positive;
the sole exception is (zero)? = 0. The equation for Change in P.E. shows that the change is
always positive except when = = z,.5:- Hence all the other positions have higher potential
energies than the rest position. v YEA

Remark. The potential energy of the rest position is positive since work is required to
stretch and /or compress the two springs into their (collective) rest position. This is different
from the situation of a single (horizontal) spring.

The formulas for power and total energy.

Now let us look at the total energy of this example; it is the sum of the kinetic energy
and the potential energy.

The kinetic energy of a particle is the work needed to bring the particle from rest to
its current velocity. The familar formula (from physics and calculus) for kinetic energy is:
1
KE.= §mv2.

Let E(t) be the energy of the system at time t and let Ey be the potential energy
of the rest position. Then

1 1
E(t) =K.E.+PE.= §m v? + E k (iL' - wrest)Q + Ep.
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_dB

Definition. Power is defined to be the rate of change of energy, that is P(t) = %

Combining Newton’s Law and Hooke’s Law, for these objects:

mi=F = —kxz +b.

Proposition 4.3 The equations of motion for this system of a block connected to two walls
by two horizontal linear springs, with no external forces acting, is:

mz +kx =25

The power being put out by such a ideal system is zero and the total energy of the ideal
system is constant.

Proof. Your calculations for Exercise 4.3 prove that % = 0 and hence the total energy

must be constsnt. This establishes the proposition. v YEA

The formula for total energy of a shock absorber.

A shock absorber consists of a spring in a cyclinder filled with oil. The oil supplies a
frictional force against the expansions and contractions of the spring. This frictional force
opposes the motion and is proportional to the speed with which the spring is expanding or
contracting. Let v(t) = & denote the velocity with which the (end of the) spring is moving
at time %, and let ¢ > 0 be the “frictional” constant of proportionality. Hence the frictional
force at time ¢ is Ffriction = —cv(t). Since the frictional force opposes the motion, it is in
the opposite direction as the velocity. This is the reason for the minus sign before the c.

Combining Newton’s Law, Hooke’s Law, together with this frictional force, the equation
for a shock absorber is

mi =Y F=—kz—cv(t)+b.

Proposition 4.4 The equations of motion for the basic shock absorber, with no external
forces acting, is:
mi + ct + kx = b,

where m,k,c > 0. The total energy of the system is monotone decreasing.

Proof. Your calculations for Exercise 4.4 prove that % < 0 and hence the total energy
must be a monotone decreasing function of time. This establishes the proposition.

Remark. The system described in Example 4.1 is an ideal system. Low level friction has
been ignored, both the friction between the moving spring and the air it is moving through
and the internal friction of the spring changing shape.
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Exercises

Exercise 4.1 Let m be a constant and let v(t) be a function of time. Check that
d(vmv)

7 = 2um v and that [vm © dt = Jvmo +c.

Exercise 4.2 Given that kzpess = b. Show that

1

1
—kx2—§kw2 —Z b4 Tpest b=

9 rest k ("E - :L.Teslf)2'

N —

Exercise 4.3 For constants Ey, xg, m and k, it is given that:

kro=b and mz+ kx =01.

Show that E(t) = 0.

Exercise 4.4 For constants Ey, zg, k, m and ¢ >0, it is given that:

kxo=b and mzi+cx+kx=0>.

1 1
E(t) = g™ v2+§ k (z — 20)* + Eo.

Show that E(t) < 0.

Exercise 4.5 Suppose that the system of Example 4.1 is turned so that it is vertical. Now
gravity must be taken into consideration.

(a) Calculate the potential energy.
(b) Show that the minimum potential energy occurs at the rest position.

(c) Calculate the equations of motion for this system of a block connected to two walls
by two vertical linear springs, with no external forces acting.

(d) Calculate the total energy E(t).

(e) By differentiating your answer to Part (c), show that E(t).



5 Complex conjugates.

COMPLEX NUMBERS: The concept of numbers is generalized to that of “complex
numbers”.

Definition. Complez numbers are numbers with the standard form z = z + iy, Vg yer
where 32 = —1. The set of all complex numbers is the complez plane denoted by C.

Complex numbers and polynomials are added and multiplied in the same way as real
numbers and polynomials with the enhancement that i2 = —1.

Complex numbers are not used for counting but then neither is the real number /2.

Complex numbers are mainly used in intermediary steps of problems with real numbers
which have real solutions.

Complex conjugates

Definition. If z = a+bi (a and b real numbers) then the complez conjugate of z is Z = a—bi.

Proposition 5.1 A (possibly) complex number z is real if and only if z = Z.

Remark. This proposition provides an equation for describing real numbers. It will be
used to show that certain (possibly nonreal) complex numbers are real numbers.

Rules 5.2 (Arithmetic rules for complex conjugates)

&

21+ 29 = + 7z, vZ1,ZQEC

21 X2 =21 X @ ’ v21,2260'

Proposition 5.3 z+ 2z and i(z — Z) V,ec are real numbers.

z X Z s a positive real number, ¥V cc, ezcept 2=0)-

Definition. Given a complex number z = z + iy (z and y real numbers), then z is called
the real part of z, and y is called the imaginary part of z. They are abbreviated as

Rez=z and Imz=y.



18CHAPTER C. CALCULUS BACKGROUND FOR LINEAR DIFFERENTIAL EQUATIONS
Observation 5.4 Given a complex number z = z + iy (x and y real numbers), then

2+2zZ=2 Re z =2z

z—z=21Imz=2y

Observation 5.5 Two complex numbers z=a+bi and w=c+di(a,b,c and d€R)
are equal if and only if their real parts are equal and their imaginary parts are equal. That
18

a+bi=c+disa=c and b=d (when a,b,c,d € R).

Since complex conjugation commutes with products, z; X zo = z; X 2, it will also
commute with positive integer powers:

22 =

ZxXz=2x2Z=(%)2,

etc.

Example 5.6 If a (non-real) complex number zy is a solution to the real polynomial equa-
tion: z* + 23+ 222 4+ 22 +4 =0, then so is its complex conjugate.

First, we translate this statement into equations.

The complex number z; being a solution means that it satisfies the given equation,
that is: It is given that:
0=z 4 25 + 222 + 22 + 4.
That its complex conjugate is also a solution means: the to show is:
0=2 + 7 + 222 + 27 + 4.
Calculations. Start with the “given” equation, taking the complex conjugate of both sides

yields:
O:(_):zé+zg+22§+2zo+4.

Since the complex conjugate commutes with sums:
20+ 28 + 228 + 220+ 4 = 2t + 23 + 222 + 220 + 4.
Since the complex conjugate commutes with products (and powers)
A B 428 + 2+ A =2+ 2+ 220 4+ 220 + 4
Combining these equations:
0=2 + 7 + 223 + 27 + 4.
Thus Zj also satisfies the equation. v YEA

Remark. This proof generalizes to any real polynomial equation.
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Example 5.7 Convert ﬁ into standard (a + bi) form.

Calculations: ] ,
1 1 4—-3: 4-—3% 4 3.

= =— — —1

= X = =
4437 443 4-—-3 1449 25 25

Remark. Note that 4 — 3i = 4+ 3:. We took advantage of the fact that z z is always a
real number (Proposition 5.3).
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Exercises

Puzzle C.5.1. Let E(z) be an unknown function which satisfies the equation

E(z+y) = E(@)E(Y), Ynumbers ¢ and ¥ (C.1)

It is also known that E(9) = 10.
(a) Find E(18) and (E(27).

(b) What other values of E(z) can you find?

Puzzle C.5.2. Let E(z) be an unknown function which satisfies the equation (C.1)
It is also known that E(8) = 10.
(a) Find E(0).
Setup: Ask the question: What is zero?
Answer: 0 is the additive identity number, that is 8 + 0 = 8.
Apply (C.1) to “8 4+ 07, that is set z = 0 and set y = 8. Then solve for E(0).
(b) Find E(-8).
Setup: Ask the question: What is —87
Answer: —8 is the additive inverse of 8, that is 8 + (—8) = 0.
Apply (C.1) to “8 4+ (—8)” and then solve for E(—8).

(c) What other values of E(z) can you find?

Puzzle C.5.3. Let E(z) be an unknown function which satisfies the equation

E(z +vy) = E(z)E(y), vnumbers z and vy

It is also known that E(1) = 3. Show that E(z) # 0,Y,ymbers 5> that is show that E(z) is
never zero.

Exercise C.5.4. Let E(z) be any function which satisfies the equation

E(z+ w) = E(z)E(w), V (complex) numbers z and w.

(a) Show that E(2z) = (E(z))?, V (complex) numbers z.
Setup: Ask the question: What is 227
Answer: 2z =2z+ z.

Apply (C.1) to “z + 2”. Then simplify.
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(b) Show that E(3z) = E(2)3, V (

complex) numbers 2

(c) Show that E(7z) = E(2)7, V (

complex) numbers 2

(d) Explain why E(nz) = E(z)",V ( and V

complex) numbers - positive integers n-

Exercise C.5.5. Let E(z) be any function which satisfies (C.1) and also E(1) # 0.
(a) Show that E(0) = 1.
Setup: Ask the question: What is zero?
Answer: 0 is the additive identity number, that is z + 0 = z.

Apply (C.1) to “z + 07, that is, set w = 0 and set z = z, where zp is a number such
that E(z9) # 0. Then simplify to E(0) = 1.
_ 1
(b) Show that E(—z) = )
Setup: Ask the question: What is —z7

Answer: —z is the additive inverse of z, that is z + (—z) = 0.

Apply (C.1) to “2+ (—2)” and then simplifiy to E(—z) = 1+ E(z) using the fact that
E(0) = 1 which you have just shown.

(c) Show that E(z) # 0.

Setup: Use the fact that E(z)E(—z) = 1 which appeared in your proof that E(—z) =
1
E(2)"

Exercise 5.1 Prove that

cos(0 + ¢) +isin(f + @) = (cosf + isinf)(cosp +ising), Vg0 ser-

Setup: (i) Use sum formulas for trig functions to expand cos(f + ¢) + isin(6 + ¢).
(ii) Multiply out (cos@ + isin8)(cos ¢ + isin ¢). Simplify.

(iii) Check that your answers to (i) and (ii) are equal.

Exercise 5.2 Prove that =cosf —isinf, YycRr.

1
cos f+isin @

Setup: Convert m to standard form.

Exercise 5.3 Prove that W = i(cos@ + isinf), V.



6 Complex Exponentials.

Definition. The function €% is defined by € = cosf+isinf,V real numbers 6, and
e®t% is defined by e(®t%) = eV real numbers z and y.

Remark. There is form and there is substance. Defining e merely provides the form of
an exponential; by itself, it does not provide the substance. We must check that it also has
the substance and properties of an exponential. Yes! it would be foolish and misleading to
use the exponential form for something that did not have the substance also.

The basic substance of an exponential is the rule: z(¢+?) = zazb.

The important calculus rule for the exponential function is

de®
dz  °
and hence (by the chain rule)
deCJJ
dr e, ¥ numbers ¢

We will now check these rules for e, when 6 is a real number.

Rules 6.1 (i) ¢l0T9) = 010 = ibci® 0 mbers o and ¢

.. deiat . 30t
(it) dt = 10",V real numbersg:

Proof. (i) Is ei(0+®) = ¢if+i¢ L ¢i00i9? The definition says that:

e 0+®) = cos(0 + ¢) + isin(0 + ¢)

and -
e?e'® = (cos@ + isinb)(cos ¢ + isin ).

As Exercise 5.1, you checked that these two expressions are equal. v YEA

Proof. (ii) You checked this as Exercise 5.3, v YEA
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Rules 6.2 (i) e*T% = e%e™, V complez numbers z and w.

.. ct
(1) d;t =ce’, YV complex numbers c.

We will use Rules 6.1 and the definition of the complex exponenetial in order to establish
Rules 6.2.

Proof. (i). Set z=a+6i and w=c+ ¢ where a, ¢, § and ¢ are all real numbers.
Then

ea+9zec+¢z a 0t c i

efe? = =e%e"e%e?, V real numbers a, ¢, 0 ¢

by the definitions. The associative law for multiplication permits us to rearrange the order
of the factors:

eaeﬁzeceqﬁz — eaeceﬁz eqﬁz'

Using the basic rule for exponentials of real numbers and Rule 6.1 (i), one sees that:

a ¢ 0i i

e%eelic?t — ea+ce(0+¢)i

Finally, the definition of complex exponentials provides:

ea+ce(0+¢)i a+c+(0+¢)i

=€

The associative law for addition permits us to rearrange the order of the numbers in the

exponent:

eatet09)i — platit)+(etid) — o2w vy regl numbers a, c, 0 ¢.

Combining all these equations yields the desired result: e*T% = e?e¥, V

v

Proof. (ii). Set ¢=a+1i0 . Then e = (0t — caleift  Hence dg—zt = dea;fm. Applying
the product rule for derivatives and Rule 6.1 (i) yields:

complex numbers » and

deat eiﬁt

= — aeateiﬂt + iaeateiet

Factoring and using ¢ = a + 46 yields
ae® e 4 ife e = (a + i0)el @O = cect,

Combining all these equations yields the desired result: et _ cet, ¥

dt
Vv

complex numbers ¢’

Complex exponential formulas for sine and cosine functions.

We note that: .
e = cos(—0) + isin(—0) = cos 6 — sin .
Thus we have

e  =cosf+isinf

e @ = cosf—isind
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Adding:
e? 4 e =2cos (C.2)

Subtracting:
e — e = 2isiné. (C.3)
Since these formulas are valid for all values of @, they remain valid when 0 is replaced by n#@:

2cosnf = e 4 =it

2isinnf = 0 — 710,
Thus o i
cosnf = % (C.4)
and inf _ ,—inf i .
sinnf = =73 (e — ¢~in0y, (C.5)
since 1 = —4.

1
Using complex exponentials to simplify and integrate trig functions.
Example 6.3 Write f(0) = cosfOsin20 as a linear combination of sines and/or cosines.

Calculations. It is complex numbers, in the form of Equations (C.2) - (C.5), to the rescue:

f(@) = cosf@sin26
4if(0) = (2cos#)(2isin26)
— (e 4 e~ i0) (20 _ ¢ 210)
— B0 By (¢ _ it
4f(0) = 2sin36 + 2siné.

Thus
cos@sin26 = f(0) = 3 (sin360 +sin#).

Query: How can we check that this (strange) formula is correct?

Answer: Graph y; =cosf@sin20 and s = %(sin 30 +sinf) on your graphing calculator
and check that the two graphs are identical.

Better Answer: Graph cosfsin260 — %(sin 30 + sinf) on your graphing calculator and
check that the graph is identically zero.

Let us see what the steps in this procedure were.
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Step# 1 Convert a function of sines and/or cosines into complex exponentials using Equations

(C.2) - (C.5).
Step# 2 Multiply-out the complex exponentials.

Step? 3 Regroup the terms as sine and/or cosine terms and then convert back into sine and/or
cosine terms.

Step#4 Check answer on graphing calculator.

The result is a trigonometric identity which shows that the original sine/cosine function
is equal to a linear combination of sine and cosine terms. This is useful because plain sine
and cosine terms are easy to integrate.

Example 6.4 Ewvaluate [cosfsin20 df. (Suppose that no table of integrals or trig identities
is handy).

Calculations. It is complex exponentials to the rescue, in the form of Equations (C.2)
- (C.5). One uses complex exponenetials to calculate that cos@sin20 = %(sin36 + sin®).
Then

/cosHsin29 df = %/(sin30+sin9) d9=—% cos 30 — % cosf+ c.

Exercise

Exercise 6.1 (a) Convert f(0) = sin? 36 cos 40 into a linear combination of sine and/or
cosine terms. Check your answer with a graphing calculator or computer.

(b) Ewaluate [ f(0)d0 .
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7 Pascal’s triangle and the binomial expansion.

We will present Pascal’s triangle as an easy way to compute the coefficients of the binomial
expansion of (a +b)", n=2,3,4,---.

Pascal’s triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

A number not on one of the sides is the sum of the two numbers above it. The numbers in this
table form the beginning of Pascal’s triangle, named after Blaise Pascal (1623-1662) because
he wrote an influential treatise about them. Pascal’s triangle and binomial coefficients were
well known in Asia, for centuries before Pascal, but he had no way to know that.

Binomial coefficients get their name from the binomial theorem, which describes the
powers of the binomial expression a + b. Let’s look at the smallest cases of this theorem:

Binomial Triangle

(a+b)°=1
(a+b)! =1a' + 1b!
(a+b)% = 1a® + 2a'b + 157
(@ + b)® = 1a® + 3a?b' + 3a'b? + 103
(a +b)* = 1a* + 4a®b' + 6a%b? + 4a'b3 + 1b*.
(a +b)% = 1a® + 5a*b! + 10a3b? + 10a%b3 + 5a'b* + 157

Note that each of these equations has the form:
(CI, + b)n = 1a" + na™ 1p! 4ot nalp? 1 11pn

and that the coefficients (in boldface type) form a Pascal triangle. Also, when reading from
any term to its neighbor on the right, the exponent of a goes down by one and the exponent
of b goes up by one; (this also occurs for the end terms 1a" = 1a™b° and 1" = 1a’b").

Let us see why the coefficients follow Pascal’s triangle. You may check the binomial
triangle formulas for (a +5)° and (a +b)' by just looking at them. You may check the
formulas for (a +b)? and (a+b)® by multiplying out (Exercise 7.1). Having checked out
the binomial triangle formulas for (a + b)® (Exercise 7.1), we will now use it to check out
the formula for (a + b)*.

Example 7.1 Assuming that (a+b)® = a®+ 3a?b+ 3ab? + b3, show that the above formula
for (a+b)* is valid.



7. PASCAL’S TRIANGLE AND THE BINOMIAL EXPANSION. 27

Calculations. We note that
(a+b)* = (a+b)(a+b)> = ala + b)> + b(a + b)>.

Using this equation and the formula for (a + b)® , we calculate:

a(a+ b)® = 1a* + 3a®b' + 3a%b? + 1ab®
+0o(a + = a’0+ 3a°0° + 3a"0° +
b(a + b)? 1a®b + 3a%b% + 3a'b® + 15*
(a+b)*=(a+b)(a+b)3=1a*+ (3 +1)a®b! + (3 + 3)a?b? + (1 + 3)a'd® + 1b*. i

Notice how each coefficient of the expansion of (a+b)* is the sum of two coefficients of the
expansion of (a + b)3.

In Exercise 7.1, you will use the binomial triangle formula for (a+b)* while you check
the formula for (a+b)®. Continuing in this manner, one can establish the binomial triangle
formulas.

Now let us modify the binomial triangle in order to obtain formulas for the powers
(a — b)™. Pascal’s triangle enables us to find powers of a sum; so we must convert a — b
into a sum. We do this thus: ¢ —b = a+ (—b), hence (a —b)" = (a + [-b])". Applying
the binomial triangle to (a + [—b])", one obtains:

(a—0b)=1
(a —b)t = 1a + 1(-b)!
(a —b)? = 1a® + 2a'(—b)* + 1(—b)?
(a —b)® = 1a® + 3a%(—b)! + 3a'(—b)? + 1(-b)?
(a — b)* = 1a* + 4a3(—b)! + 6a(—b)? + 4a' (—b) + 1(—b)*.
(a —b)® = 1a® + 5a*(—b)! + 10a3(—b)? + 10a?(—b)> + 5a' (—b)* + 1(—b)5.

We note that (—b)" = (—1)"b" = b", when n is an even integer and that (—b)" =
—b", when n is an odd integer. This simplifies the triangle to:

Binomial Triangle for (a — b)"

(a—b)=1
(@ —b)! = 1a—1b
(a —b)? = 1a®—2ab + 1b?
(@ —b)® = 1a3—3a?b + 3ab>—1b3
(a — b)* = 1a*—4ab + 6a2b>—4ab> + 1b*.
(@ —b)® = 1a°—5a*b + 10a3b*>—10a2b® + 5ab*—1H°

Notice that the only differences between the Binomial Triangles for (a + b)" and for
(a — b)™ are the alternating minus signs.
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We may use Pascal’s Triangle, together with (C.2) - (C.5) to convert some complicated
sine and cosine functions like sin® @ into a linear combination of sines and cosines. You will
do this as Exercise 7.3.

Exercises
Exercise 7.1 Check the binomial triangle formulas for (a+b)", n=20,1,2 and 3.

Exercise 7.2 Assuming the Pascal triangle formula for (a + b)*, show that the Pascal
triangle formula for (a+b)® is valid.

You may use the method of Example 7.1.

Exercise 7.3 (a) Convert f(0) = sin® @ into a linear combination of sine and/or cosine
terms. Check your answer with a graphing calculator or computer.

(b) Evaluate [ f(0)d0 .
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Exponential decay to steady state.

Proposition 4.9 (Exponential decay to steady state) For constant numbers, r and k,
the general solution to & =rxz(t)+k is = =c+ Ae™, V4, where ¢ = —k/r is a constant
solution.

Remark. The constant solution is often called the steady state solution because its “state”
is “steady”, that is its “state” does not change as time changes. I named this “exponential
decay to steady state” because the solution is a constant solution plus/minus an exponen-
tially decaying term. For moderately negative or large negative values of r, many solutions
quickly approach the constant steady state solution and stay close forever after.

Memorize this proposition; “exponential decay to steady state” occurs a lot. The
Ae™, Vy-term is the standard exponential decay formula. Do not memorize the constant
¢ = —k/r-term; calculate it quickly by guessing z = ¢ is a solution, plug into the dif. eq.
and quickly solve for c.

Example 4.10 (Exponential decay to the ambient temperature) An object is place
in a space (for example, a refrigerator) with a constant temperature. Newton’s Law of Cooling
is applicable. After a while, the temperature of the placed object becomes close to that of the
space and stays close forever after. In particular, if 0(t) is the temperature of the object
at time t, T s the temperature of the ambient space and k > 0 is the “constant”, then
Newton’s Law of Cooling is: 6 = —k(0(t) —T). A consequence is that

0(t) =T + (0(0) — T)e ™ and hence lim O(t) =T
t—o0

Example 4.11 (Exponential decay to the pollution fraction) Liquid (mostly water)
is flowing into a lake at a constant rate, r. The lake empties into a river at the same
constant rate r. Since 1900, factories have added a pollutant to the lake at a constant rate,
rp. After a while, the pollution part of the liquid in the lake becomes close to that of the
pollution fraction rp/r, and stays close forever after.

In particular, if P(t) is the fraction of pollutant in the lake at time t, then

tl_lglo P(t) =rp/r

Setup: Let Q(t) be the amount of pollutant in the lake at time ¢, then P(t) =
Q(t)/{Vol of lake}

Example 4.12 (Exponential decay to the voltage of the battery) A single simple loop
contains a battery (with constant voltage Vj), a resistor (with resistance R) and a capacitor
(with capacitance C). Let q = q(t) be the charge (amount of electrons) at time t, on
the plates of the capacitor; let i = ¢ = dq/dt denote the electrical current going through
the loop. The wvoltage across the capacitor is V. = q/C; the voltage across the resistor is
Vr = iR. Kirchoff’s Voltage Law says that the sum of the voltage drops around a loop is
zero, hence: Vo + V. +V, =0. By calculation, limy ,o V.(t) = —Vj.



Exercises

Exercise 4.5 Prove Proposition II.4.9.

Setup: Do a proof by calculation. Solve the equation: % = rz(t) + &k , when r and k
are constant numbers.

Exercise 4.6 Prove Example I1.4.10.

Setup: Do a proof by calculation. Use Proposition I1.4.9 to quickly obtain the general
solution to the equation: 6 = —k(0(t) — T), when T and k are constant numbers. Then
find the constant “A” by using the initial condition € = ¢(0) when ¢ = 0.

Exercise 4.7 Prove Ezample I1.4.12.

Setup: Do a proof by calculation. The conclusion (to show) is: limy o Vo(t) =
—Vh. The given is all the other equations stated in the example. Convert the equation
Vo + V. 4+ Vg = 0 into a differential equation about ¢. Use Proposition 11.4.9 to solve for
q(t). Then prove (calculate) that lim; o V,(t) = —Vj.



